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Abstract
The magnetoconductanceG in chaotic quantum dots at medium/high magnetic
fluxes � is calculated by means of a tight-binding Hamiltonian on a square
lattice. Chaotic dots are simulated by introducing diagonal disorder on surface
sites of L × L clusters. It is shown that when the ratio W/L is sufficiently
large, W being the width of the leads, G increases steadily (almost with no
fluctuations) showing a maximum at a magnetic flux �max ∝ L2/W (a flux
at which the cyclotron radius rc ≈ W/2). Neither regular nor bulk disordered
ballistic cavities (with a content of impurities proportional to L) show this
effect. On the other hand, for magnetic fluxes such that rc > L/2 and up
to the aforementioned maximum, the average magnetoconductance increases
almost linearly with the flux with a slope proportional to W 2. These results
closely follow a theory proposed by Beenakker and van Houten to explain the
magnetoconductance of two point contacts in series.

1. Introduction

Magnetoconductance in chaotic quantum dots has attracted a great deal of attention in recent
years [1–4]. Weak-localization effects have been thoroughly investigated, with differences
between chaotic and regular cavities being searched for [1, 3]. More recently, the self-similar
character of magnetoconductance fluctuations in chaotic quantum dots has warranted several
experimental studies [2, 4]. In reference [4] it was reported that in cavities with sufficiently
soft walls, rather wide leads and a high zero-field conductance of the order of 40 conductance
quanta, fluctuations were very weak and the magnetoconductance increased steadily by
approximately 20% over 50 flux quanta [4]. Although an increase in the magnetoconductance
as a function of the magnetic flux in cavities with wide leads may not be that surprising, no
theoretical analysis of this result is yet available. This is so despite the wealth of experimental
and theoretical information on magnetoconductance in related mesoscopic systems [5–10].

The purpose of the present work is to investigate the magnetoconductance of chaotic
quantum dots over a wide range of magnetic field. Quantum dots are described by means of
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a tight-binding Hamiltonian on L × L clusters of the square lattice. Non-regular (chaotic)
behaviour is induced by introducing disorder at surface sites, a procedure that has been shown
to reproduce all properties of quantum chaotic cavities [11]. The most outstanding conclusions
derived from our study are the following. For sufficiently open systems, large lead width W
or, alternatively, high zero-field conductance, the magnetoconductance increases steadily as a
function of the magnetic flux, reaching a maximum at a magnetic flux �max proportional to
L2/W ,W being the width of the leads. This effect, which is in agreement with experimental
observations [4], does not show up in regular or bulk disordered cavities. The average
magnetoconductance versus magnetic flux curve shows four clearly differentiated regions:

(i) At small fluxes (typically below 1–2 flux quanta) the weak-localization peak with the
typical Lorentzian shape is observed.

(ii) This is followed by a flux range over which the magnetoconductance shows a non-universal
behaviour which depends on the configuration of the leads.

(iii) The latter lasts until the cyclotron radius becomes of the order of L/2. Beyond this point
the average magnetoconductance increases linearly with the magnetic flux with a slope
which increases with the square of the width of the leads (for very small W the slope is
nearly zero and the magnetoconductance remains constant over a large flux range).

(iv) At large fluxes (cyclotron radii larger than W/2) the magnetoconductance decreases
stepwise (each step of one flux quantum), due to the successive crossings of the Fermi
energy of the transverse modes that contribute to the current.

As discussed below, these results are compatible with a theory proposed by Beenakker and
van Houten [10] to interpret the experimental results for the magnetoconductance of two point
contacts in series [9].

The rest of the paper is organized as follows. Section 2 includes a description of our model
of a chaotic quantum dot and of the method that we used to compute the current. The results
are presented in section 3, and discussed in terms of the theory of reference [10]. Section 4 is
devoted to summarizing the conclusions of our work.

2. Model and methods

2.1. Model

The quantum dot is described by means of a tight-binding Hamiltonian with a single atomic
level per lattice site on L× L clusters of the square lattice:

Ĥ =
∑
m,n∈IS

ωm,n|m, n〉〈m, n| −
∑

〈m,n;m′,n′〉
tm,n;m′,n′ |m, n〉〈m′, n′| (1)

where |m, n〉 represents an atomic orbital on site (m, n). Indices run from 1 to L, and the
symbol 〈 〉 denotes that the sum is restricted to nearest neighbours. Using Landau’s gauge, the
hopping integral is given by

tm,n;m′,n′ =




exp

(
2π i

m

(L− 1)2
�

)
m = m′

1 otherwise
(2)

where the magnetic flux � is measured in units of the quantum of magnetic flux �0 = h/e.
The energy ωm,n of atomic levels at impurity sites (IS) is randomly chosen between −�/2
and �/2, whereas at other sites, ωm,n = 0. Impurities were taken on all surface sites [11, 13]
except those coinciding with the lead entrance sites to avoid excessive (unphysical) scattering.
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This model has been proposed to simulate cavities with rough boundaries and its properties
closely follow those characterizing quantum chaotic systems [11,13]. Some calculations were
also carried out on clusters with 2L bulk impurities1.

2.2. Conductance

The conductance (measured in units of the quantum of conductanceG0 = e2/h) was computed
by using an efficient implementation of the Kubo formula. The method is described in [14],
while applications to mesoscopic systems can be found in [15, 16]. For a current propagating
in the x-direction, the static electrical conductivity is given by

G = −2

(
e2

h

)
Tr[(h̄v̂x) Im Ĝ(E)(h̄v̂x) Im Ĝ(E)] (3)

where Im Ĝ(E) is obtained from the advanced and retarded Green functions:

Im Ĝ(E) = 1

2i
[ĜR(E)− ĜA(E)] (4)

and the velocity (current) operator v̂x is related to the position operator x̂ through the equation
of motion h̄v̂x = [Ĥ , x̂], Ĥ being the Hamiltonian.

Numerical calculations were carried out connecting quantum dots to semi-infinite leads
of widthW in the range 1–L. The hopping integral inside the leads and between the leads and
the dot at the contact sites is taken equal to that in the quantum dot (ballistic case). Assuming
the validity of both the one-electron approximation and linear response, the exact form of the
electric field does not change the value of G. An abrupt potential drop at one of the two
junctions provides the simplest numerical implementation of the Kubo formula [14] since, in
this case, the velocity operator has finite matrix elements for only two adjacent layers and
Green functions are just needed for this restricted subset of sites. Assuming this potential drop
to occur on the left-contact (lc) side, the velocity operator can be explicitly written as

ih̄vx = −
W∑
j=1

(|lc, j〉〈1, j | − |1, j〉〈lc, j |) (5)

where (|lc, j〉 are the atomic orbitals at the left-contact sites that are nearest neighbours to
the dot.

The Green functions are given by

[EÎ − Ĥ − �̂1(E)− �̂2(E)]Ĝ(E) = Î (6)

where �̂1,2(E) are the self-energies introduced by the two semi-infinite leads [6]. Most
calculations were carried out by assuming that the magnetic field was zero outside the dot.
Under this assumption the retarded self-energy due to the mode of the wavevector ky can be
calculated explicitly:

�(E) = 1

2

(
E − ε(ky)− i

√
4 − (E − ε(ky))2

)
(7)

for energies within its band |E − ε(ky)| < 2, where ε(ky) = 2 cos(ky) is the eigenenergy of
the mode ky which is quantized as ky = (nkyπ)/(W +1), nky being an integer in the range from
1 toW . The transformation from the normal modes to the local tight-binding basis is obtained
from the amplitudes of the normal modes, 〈n|ky〉 = √

2/(W + 1) sin(nky). Some calculations
were done taking the magnetic field on the leads equal to that within the dot. For such cases

1 This model has been shown to follow the characteristics of quantum chaotic systems [17]. The key point is that
chaotic behaviour is obtained whenever the number of impurities is proportional to L.
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the self-energy was calculated by iterating Dyson’s equation. If not specified, calculations
discussed hereafter correspond to the case of no magnetic field in the leads. Calculations were
carried out on clusters of linear size L = 47–394 (in units of the lattice constant), with a fixed,
arbitrarily chosen, Fermi energy, E = −π/3, and a disorder parameter � = 6 [11]. In some
cases, averages over disorder realizations were also taken. Although most calculations were
performed with input/output leads of width W connected from site (1, 1) to site (1, 1 +W),
and from (L,L) to (L,L−W), respectively, other input/output lead configurations were also
explored. All calculations on disordered systems were made at a fixed value of the disorder
parameter, � = 6.

3. Results

We first discuss results for a ratioW/L similar to that used in the experiments of reference [4].
In that work, conductance measurements were taken on a stadium cavity with a lithographic
radius of 1.1 µm and leads 0.7 µm wide, which gives a ratio W/L of 0.64. Figure 1 shows
the results for the magnetoconductance in cavities of linear sizes in the range L = 47–394
and leads of width W = 0.65L. The results correspond to a single realization of disorder.
The most interesting result is the steady increase of the conductance with the magnetic field.
The conductance reaches a maximum at a magnetic flux �max which, as illustrated in the
inset of the figure, increases linearly with the linear size of the system L. At higher fields it
decreases stepwise (visible lower right in figure 1; see also below). The increase in G before
the maximum is reached can be as high as 30%. Note that, as the results of figure 1 correspond
toW ∝ L, they do not allow one to derive the actual relation between�max and the dimensional
parameters W and L. The results discussed below show, however, that �max ∝ L2/W . It is
interesting to note that the increase in the conductance occurs with rather weak fluctuations
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Figure 1. Magnetoconductance versus magnetic flux multiplied by the inverse of the dot area (both
in units of their respective quanta), in dots of linear size L and leads of width W (connected at
opposite corners) with a similar W/L ratio of ≈0.65. Results for (L,W) = (97, 63), chain line,
(197, 127), broken line, and (394, 254), continuous line, are shown. The results correspond to a
single realization of disorder (Anderson impurities at surface sites with� = 6) and a Fermi energy
E = −π/3. Inset: the flux at which the magnetoconductance is maximum is plotted as a function
of the linear size of the dot L. The fitted straight line is �max/�0 = 0.026 + 0.86L.
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due to the large W/L ratio (or degree of opening) of the cavity (see [16]). Although the
experimental data were taken at fields not high enough for observing the maximum shown in
figure 1, it can be safely assumed that our results are compatible with those of reference [4].

Including the magnetic field in the leads does not change qualitatively the results discussed
above. Figure 2 shows the magnetoconductance for cavities of linear sizeL = 97 with leads of
widthW = 63, and a single realization of disorder. The two calculations (with or without field
in the leads) give very similar results for fluxes up to� ≈ 30, and differ only at a quantitative
level at larger fluxes. A possible reason for the similarity between the two calculations is
that, as the Green function of the whole system is calculated through Dyson’s equation (see
equation (6)), the region of the leads close to the dot is distorted by the magnetic field even
in the case where no magnetic field is explicitly included in the leads. This result has an
important consequence: as from an experimental point of view neither of the two calculations
is realistic (the leads will probably be partially located within the non-zero-field region), the
fact that these two limiting calculations give very similar results allows one to carry either of
the two rather confidently.
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Figure 2. Magnetoconductance versus magnetic flux (both in units of their respective quanta), in
dots of linear size L = 97 and leads of width W = 63 (connected at opposite corners of the dot).
The results correspond to a single realization of disorder (Anderson impurities at surface sites with
� = 6), a Fermi energy E = −π/3, and systems with (broken line) or without (continuous line)
magnetic field in the leads.

In figure 3 we compare the results for the cavity with surface disorder with those for a
regular cavity and for a cavity with 2L bulk impurities. The results indicate that the cavity
having surface disorder is the only one that reproduces the experimental results [4]. In regular
cavities the conductance does not increase steadily due to the large-amplitude oscillation
discussed in [16]. This behaviour clearly differentiates regular and chaotic cavities. At large
fields the result for the cavity with surface disorder coincides with that for the regular cavity.
This is a consequence of the fact that for sufficiently high fields the current is dominated by
edge-like states which are not affected by surface disorder. Semiclassically, one can view
carrier motion as short orbits bouncing off the same boundary. The associated quantum states
have chirality and are thus commonly referred to as chiral states or edge states. The stepwise
decrease of the magnetoconductance observed in regular and chaotic cavities with surface
disorder is a consequence of the overall depopulation of Landau levels. It is interesting to
note that the cavity with bulk disorder shows a markedly different behaviour, as this type of
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Figure 3. Magnetoconductance versus magnetic flux (both in units of their respective quanta), in
97 × 97 dots with leads of width W = 57 connected at opposite corners of the dot. The results
correspond to dots with: (i) no disorder (broken line); (ii) Anderson impurities with � = 6 (a
single realization of disorder) placed either on all surface sites except those coinciding with the
lead entrance sites (continuous line) or 2L impurities distributed randomly within the dot (thin
continuous line).

disorder can, instead, scatter carriers between opposite sides of the cavity. The results shown
in figure 3 illustrate the only difference that we have found up to now between cavities with
surface impurities and with a number of bulk impurities proportional toL [17]. Apart from this
difference, the two behave very similarly and in line with what one expects to be the behaviour
of quantum chaotic cavities [3].

We have investigated how this steady increase of the magnetoconductance is affected by
the width of the leads. In order to reduce fluctuations, which are particularly important at small
W [16], we have averaged the conductance over disorder realizations (600 realizations were
included in the calculations). The results for a cavity with rather narrow leads attached at the
dots in three different ways are illustrated in figure 4. At small fluxes (typically below 1–2
flux quanta) the expected Lorentzian peak characteristic of chaotic cavities [3] is obtained (not
clearly visible in the figure). At higher fluxes, a range over which the conductance behaves in a
way that is strongly dependent on the lead configuration is observed. Beyond, the conductance
increases linearly with a slope which takes very similar values in the three cases shown in the
figure. The crossover to the linear behaviour occurs at a flux for which the radius of the classical
cyclotron orbit rc is roughly L/2. In our units (flux and conductance quanta �0 = G0 = 1
and energy h̄2/(2ma2) = t = 1, where t is the hopping integral), rc is given by

rc = h̄vF (L− 1)2

4π

�0

�
(8)

where the Fermi velocity is given by

h̄vF = 〈2
√

sin2 kx + sin2 ky〉EF .
At the energy chosen here, h̄v(E) ≈ 2.2. Then the flux at which rc = L/2 is, for the size of
figure 4, � = 17�0, which is very close to the flux at which the above-mentioned crossover
occurs.
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Figure 4. Magnetoconductance versus magnetic flux, in cavities of linear size L = 47 and leads
of width 8 connected at: contiguous corners (circles), opposite corners (crosses), and one corner
and the centre of the opposite side (triangles). Anderson impurities with � = 6 were placed at
all surface sites except those coinciding with the lead entrance sites. The results correspond to an
energy E = −π/3 and an average over 600 disorder realizations. Straight lines were fitted for
fluxes above 20. The fitted lines are: crosses: G = 1.99 + 0.011�; circles: G = 2.03 + 0.01�;
and triangles: G = 2.12 + 0.013�.

Figure 5 shows the averaged magnetoconductance for cavities of linear size L = 47 and
lead widths in the range W = 4–20. It is noted that the linear behaviour discussed above
appears in all cases at roughly the same magnetic flux, indicating that it is only related to the
cavity size L, as suggested by the discussion above. Instead the slope increases with the width
of the leads. At small W (systems with a low conductance) the conductance increases very
slowly as a function of the magnetic flux. For sufficiently largeW the conductance reaches a
maximum and then decreases stepwise. As remarked above, the latter is a consequence of the
overall depopulation of transverse modes (or Landau levels). The flux at which that maximum
occurs decreases withW . In fact, it actually corresponds to rc ≈ W/2: introducing this value
in equation (8) we obtain �max ≈ 100, 65, 50 and 40, to be compared with the numerical
values of figure 5: 140, 90, 70 and 55, respectively. The agreement is reasonable. These
results, combined with equation (8), indicate that �max ∝ L2/W .

In figure 6 we plot the slope of the linear part of the magnetoconductance as a function of
the width of the leads. The results can be accurately fitted by a W 2-law. The increase of the
magnetoconductance can be understood in terms of the increase of the transmission probability
of the transverse modes as their edge-like character increases and, consequently, its sensitivity
to surface disorder is reduced. The steady increase in the conductance takes place until the
above-mentioned depopulation begins to reduce the number of modes that participate in the
current. Although this argument seems plausible, it cannot explain quantitative features of
the results such as the linear relation between the conductance and the flux or the increase
of the slope as the square of the lead width. This issue is addressed in the following
section.
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Figure 5. Magnetoconductance versus magnetic flux, in cavities of linear size L = 47 and leads
of width W = 4 (a), 8 (b), 12 (c), 16 (d) and 20 (e), connected at opposite corners of the dot.
Anderson impurities with � = 6 were placed at all surface sites except those coinciding with the
lead entrance sites. The results correspond to an energy E = −π/3 and an average over 600
disorder realizations. Straight lines were fitted for fluxes above 20 and below the flux at which the
conductance shows a maximum. The slopes of the straight lines are plotted as a function ofW 2 in
figure 6.
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Figure 6. Slopes of the lines fitted in figure 5 versus the square of the width of the leads W . The
fitted straight line is −0.0019 + 2 × 10−4W 2.

4. Discussion

The results discussed in the previous section resemble those predicted by Beenakker and
van Houten for the magnetoconductance of two point contacts in series [10] and the related
experiments of Staring et al [9]. Under the hypothesis that transmission between point contacts
occurs with intervening equilibration of the current-carrying edge states, the authors of [10]
derived the following expression for the conductance (in the following we take the conductance
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and flux quanta G0 = �0 = 1 and do not include spin degeneracy):

G(�) =
[

1

N1
+

1

N2
− 1

NL

]−1

(9)

where Ni are the number of occupied subbands in the two contacts or leads (i = 1, 2) and
in the region between the contacts, or in the present case in the dot (i = L). Disregarding
discreteness [10], Ni can be written as

Ni = ni

2B
f (ξi) (10)

where ni are the electron densities in the leads and in the region between them (i = 1, 2) and
the function f (ξi) is

f (ξi) =



2

π
[arcsin ξi + ξi(1 − ξ 2

i )
1/2] if ξi < 1

1 if ξi > 1
(11)

with ξi = li/2rc, li being a characteristic linear dimension in the three regions; in the present
case, li = W1,W2, L.

We have used equations (9) and (10) to fit the numerical results of figure 5. We took
as the fitting parameter the density or the Fermi velocity, h̄vF = 2

√
2πn, and assumed the

same density in the leads and dot. As shown in figure 7, a satisfactory fitting is obtained for
h̄vF = 3.65, almost twice the actual Fermi velocity in our model (see above). Note that one
should not expect a better agreement, considering the important differences between the model
used in the present numerical calculation and that of [10]. The theory reproduces the three
regions that characterize our numerical results: an almost constantG for small flux or rc > L/2,
and a steadily increasingG up to rc ≈ W/2 followed by a steep decrease at higher fluxes. It is
interesting to note that the theory of reference [10] shows a better agreement with the numerical
results for the case in which the leads are attached at opposite corners of the dot than with those
for the other two lead configurations of figure 4. A possible reason for this behaviour relies
upon the equilibration assumption in Beenakker and van Houten theory. Equilibration is most
likely when the leads are not facing each other, as is the case for leads attached to opposite
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Figure 7. A fit of the numerical results of figure 5 by means of the theory of reference [10]—broken
and continuous curves respectively (see the text).
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corners. Instead, when leads are attached at contiguous corners, direct transmission is more
probable and equilibration requires higher magnetic fields to take place. This is a figurative
illustration of the assumptions under which the theory of reference [10] holds.

In order to check whether a linear relationship between the conductance and the flux over
a rather wide range of fluxes, as indicated by the fits of figure 5, can be understood in terms of
this theory, we have expanded the conductance for small ξ and ξL > 1. The result for leads
having the same width and the same Fermi velocity (or density) in the leads and dot is

G(�) ≈ n1

2πB

[
2ξ +

4

π
ξ 2 +

(
8

π2
− 1

3

)
ξ 3

]
. (12)

As the maximum in G occurs for ξ slightly smaller than unity, checking whether G varies
linearly with the magnetic field below the maximum only requires one to calculate the ratio
between the coefficients of the second and third powers of ξ in equation (12). This ratio
is 2.82, indicating that the linear term dominates, in agreement with our numerical results.
This equation also shows that the slope of the straight line is proportional to W 2. To make a
quantitative comparison with the result of figure 6 we rewrite equation (12) introducing the
actual expression for ξ ; the result is

G(�) ≈ h̄v

4π
W +

W 2

πL2
� +

π

2h̄v

(
8

π2
− 1

3

)
W 3

L2
�2. (13)

The coefficient of the linear term turns out to be 1.44×10−4W 2—not too far from the numerical
result of figure 6.

5. Concluding remarks

Summarizing, we have presented a numerical analysis of the magnetoconductance of quantum
chaotic cavities over a wide range of magnetic fields. For sufficiently open cavities the
magnetoconductance increases steadily, reaching a maximum at a cyclotron radius rc ≈ W/2
(or, equivalently, a flux proportional to L2/W ). This steady increase of G agrees with the
experimental observations reported in [4]. Neither regular nor bulk disordered cavities behave
in this way. Numerical results for the average magnetoconductance indicate that, for magnetic
fluxes larger than that for which the cyclotron radius is approximatelyL/2 and smaller than the
flux at which the aforementioned maximum is reached, it increases linearly with the magnetic
flux � with a slope proportional to the square of the width of the leads. At higher fluxes the
conductance decreases stepwise. These results admit a satisfactory explanation in terms of
the theory proposed by Beenakker and van Houten to interpret the experimental results for the
magnetoconductance of two contacts in series. The fact that our results for small magnetic
fluxes (rc > L/2) show a better agreement with the theory in the case where the two contacts
are attached to opposite corners of the dot (and, thus, are not facing each other) is related to
the stronger equilibration of edge states promoted by this lead configuration with respect to
the other two geometries explored in this work.
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